清华自然语言处理|28自然语言处理预训练模型所需论文,可下载源代码+论文

2259 Views 0 Comments

原标题:清华自然语言处理| 28自然语言处理预训练模型所需论文,可下载源代码+论文

摘要:本文介绍了清华大学在Github项目thunlp/Plmpapars中给出的预训练语言模型所需的论文列表,包括论文的PDF链接、源代码和模型。

项目地址(点击阅读原文直接访问):返回搜狐查看更多信息

https://github.com/thunlp/PLMpapers 论文: https://arxiv.org/pdf/1802.05365.pdf 工程: https://allennlp.org/elmo (ELMo) 论文: https://www.aclweb.org/anthology/P18-1031 工程: http://nlp.fast.ai/category/classification.html (ULMFiT) 论文: https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf 工程: https://openai.com/blog/language-unsupervised/ (GPT) 论文: https://arxiv.org/pdf/1810.04805.pdf 代码+模型: https://github.com/google-research/bert 论文: https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf 代码: https://github.com/openai/gpt-2 (GPT-2) 论文: https://www.aclweb.org/anthology/P19-1139 代码+模型: https://github.com/thunlp/ERNIE (ERNIE (Tsinghua) ) 论文: https://arxiv.org/pdf/1904.09223.pdf 代码: https://github.com/PaddlePaddle/ERNIE/tree/develop/ERNIE (ERNIE (Baidu) ) 论文: https://arxiv.org/pdf/1905.12616.pdf 工程: https://rowanzellers.com/grover/ (Grover) 论文: https://arxiv.org/pdf/1901.07291.pdf 代码+模型: https://github.com/facebookresearch/XLM (XLM) 论文: https://www.aclweb.org/anthology/P19-1441 代码+模型: https://github.com/namisan/mt-dnn (MT-DNN) 论文: https://arxiv.org/pdf/1905.02450.pdf 代码+模型: https://github.com/microsoft/MASS 论文: https://arxiv.org/pdf/1905.03197.pdf (UniLM) 论文: https://arxiv.org/pdf/1906.08237.pdf 代码+模型: https://github.com/zihangdai/xlnet 论文: https://arxiv.org/pdf/1907.11692.pdf 代码+模型: https://github.com/pytorch/fairseq 论文: https://arxiv.org/pdf/1907.10529.pdf 代码+模型: https://github.com/facebookresearch/SpanBERT 论文: https://arxiv.org/pdf/1909.04164.pdf (KnowBert) 论文: https://arxiv.org/pdf/1908.03557.pdf 代码+模型: https://github.com/uclanlp/visualbert 论文: https://arxiv.org/pdf/1908.02265.pdf 代码+模型: https://github.com/jiasenlu/vilbert_beta 论文: https://arxiv.org/pdf/1904.01766.pdf 论文: https://arxiv.org/pdf/1908.07490.pdf 代码+模型: https://github.com/airsplay/lxmert 论文: https://arxiv.org/pdf/1908.08530.pdf 论文: https://arxiv.org/pdf/1908.06066.pdf 论文: https://arxiv.org/pdf/1909.07606.pdf 论文: https://arxiv.org/pdf/1908.05054.pdf (B2T2) 论文: https://arxiv.org/pdf/1906.05743.pdf (CBT) 论文: https://arxiv.org/pdf/1907.12412v1.pdf 代码: https://github.com/PaddlePaddle/ERNIE/blob/develop/README.md 论文: https://arxiv.org/pdf/1904.02099.pdf 代码+模型: https://github.com/hyperparticle/udify (UDify) 论文: https://arxiv.org/pdf/1906.08101.pdf 代码+模型: https://github.com/ymcui/Chinese-BERT-wwm/blob/master/README_EN.md (Chinese-BERT-wwm)

负责任的编辑:

转载请注明:红包接龙30 >> gAmJgp » 清华自然语言处理|28自然语言处理预训练模型所需论文,可下载源代码+论文

发表我的评论

发表我的评论

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址